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Clustering Refresher
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Figure 2| A synthetic gene-expression data set. This data set provides an opporiunity 10 n
evaluate how various clustering algorithms reveal diferent features of the data. a | Nine distinct d(p,q) =d(q,p) = V(g1 —p1)2+ (@2 — p2)2 + -+ (@ — pn)2 = Z(q,- —pi)2
gene-expression patterns were created with log jratio) expression measures defined for ten
experiments. b | For each expression pattern, 50 addiional genes were generated,
representing variations on the basic pattemns
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Computational genetics: Computational analysis of microarray data
Quackenbush (2001) Nature Reviews Genetics. doi:10.1038/35076576



Hierarchical Clustering

average

complete

single




Principle Components Analysis (PCA)
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Figure 4 | Principal component analysis. The same demonstration data set was analysed
using a | hierarchical (average-linkage) clustering and b | principal component analysis using

Euclidean distance, to show how each treats the data, with genes colour coded on the basis
of hierarchical clustering results for comparison.
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ARTICLE

An integrated map of genetic variation
from 1,092 human genomes

The 1000 Genomes Project Consortium®

God 30 3058 mature 1 142

By characterizing the geographic and functional spectrum of human genetic varfation, the 1000 Genomes Project almns to
build a resource to help to understand the genetic contrdution to disease. Here we describe the genoases of 1,092
individeals from 14 populations, comstructed using & combination of Jow.-coverage whole-gemome and exomne
Mtymm:mm“mwmmmmn

a validated 38 mion nucleotide polymsorphisms, 1.4 million shoet insertions and
mdmummu:um froquency varfants show substantial geographic differentiation,
which is further increased by the action of purifyving sclection. We show that evolutionary conservation and coding
comsequence are key determinants of the strength of purifying selection, that rare-variant load varies substantially

acTons pathwayy, and that each individual contains hundrods of rare non-coding variants at conserved sites,
such s . changes in transcription -factor - binding sites. This resource, which captures up to 98% of
accessible single wmmamummm#dmu

low - frequency variants in individuals from diverse, Including admixed, popalations.



|000 Genomes Populations




|000 Genomes Populations
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| 000 Genomes: Human Mutation Rate

* Phase | Release
— 1092 individuals from 14 populations

— Combination of low coverage WGS, deep
coverage WES, and SNP genotype data

* Overall SNP rate between any two people is
~1/1200bp to ~1/1300

— ~3M SNPs between me and you (.1%)

— ~30M SNPs between human to
Chimpanzees (1%)

e De novo mutation rate ~1/100,000,000

— ~100 de novo mutations from generation to
generation

— ~1-2 de novo mutations within the protein
coding genes

Constructing an integrated map of
variation

The 1,092 haplotype-resolved genomes released as phase | by the
1000 Genomes Project are the result of integrating diverse data from
multiple technologies generated by several centres between 2008 and
2010. The Box 1 Figure describes the process leading from primary
data production to integrated haplotypes.
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An integrated map of genetic variation from 1,092 human genomes

1000 genomes project (2012) Nature. doi:10.1038/naturel 1632




Human Mutation Types

10 - -100 kb -1 kb -10 bp 100 bp 10 kb o [ | P
-10kb ; -100b 10b 1 kb 100 kb o
9- v " -0.9 3
@ 8- 08 ©
- 44}
-g -0.7
> .
- - 0.6 ,g
3 05 £
E ! S
g' 0.4 6
o 03 §
o C
S - 0.2 S
o
- 0.1 &

- 0.0

Deletions SNPs Insertions
Log,, (size)

* Mutations follows a “log-normal” frequency distribution

— Most mutations are SNPs followed by small indels followed by larger events

A map of human genome variation from population-scale sequencing
1000 genomes project (2010) Nature. doi:10.1038/nature09534



Copy Number Variations

Large-Scale Copy Number
Polymorphism in the
Human Genome
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dbSNP Summary
RELEASE: NCBI dbSNP Build 141

dbENP Componemt Avallability Dates:

Component Date available
dbSNP web query for bulid 141: May 21, 2014
fep cata for build 141; May 21, 2014
Entrez Indexing for budid 141:  May 21, 2014
BLAST database for bulld 141:  May 21, 2014

- The compiate data for Buld 141 are sveladle 8! A0 N feti sl ob ooiany’ s muliple formats
+ Ai formats and conventons are described in Hiz.Mp ncbs nim nih govisnpNOMeacme g

« Ploase address any quesions or comments reganding the data 10 Ep-admindinch nim nth gov.

Now Submiss.on since previous build:

Home sagiens 141
Total: 1 Organsms

BUILD STATISTICS

Organiam  Curment New Subowssions New RefSNP Clustors New ssf with New ss# with
Build Genotype  Froquency

(ss¥'s) {rs#'s) ( & validated)
20708470 137 ()
20.700.470 1370

"SubvsSons recevod after reckustonng of cument il will 220087 a3 New 5P CUSNNS 10 He Neat buid

Number of Number of
HSNP G Number of Number of Number of (s3#'s) (ss#'s)
: Build  Bulld "oy (rs&'s) { # varcatod) i with with
) ¢ Q0% genotype frequency
Ho—¢ sape-s M1 3 200570204 62,387,963 (43,737.321) 200901117 73.900.256 35007943
Tots: 1 Organiams 0 260570204 62367 963 (43,737 321) 20901,117 73900256 35007943

PINTMay

Periodic release of
databases of known
variants and their
population
frequencies

Generally assumed
to be non-disease
related

However, as catalog
grows, almost
certainly to contain
some medically
relevant SNPs.



Variation across populations

PCA coloured by population, Global
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Table S12A Summary of sites showing high levels of population differentiation

Not a single variant 100% unique to a given population
| 7% of low-frequency variants (.5-5% pop. freq) observed in a single ancestry group
50% of rare variants (<.5%) observed in a single population




Variation across populations

Europeans
PCA coloured by population, Global
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Table S12A Summary of sites showing high levels of population differentiation

* Not a single variant 100% unique to a given population
* |7% of low-frequency variants (.5-5% pop. freq) observed in a single ancestry group
* 50% of rare variants (<.5%) observed in a single population




Mutation Rates and Evolutionary Time

Human 1

Chimpanzee

Human 1

Human 1

Chimpanzee

DNA clues to our inner neanderthal

Svante Paabo (201 ). TED Global.

Since mutation occur as a function of time we can
use the number of mutation to age when different
populations split

Interestingly, there is much more variability within
Africa than outside of Africa despite the much
smaller population

We see “African” alleles all around the world

* Only 12 SNPs across the entire genome
‘unique’ to Africa (allowing 95% tolerance)

*  We are all African (either currently living in
Africa or recent exiles)!

Open question if/how early modern
humans interacted with earlier hominid

https://lwww.ted.com/talks/svante_paeaebo_dna_clues_to_our_inner_neanderthal
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Homo
neanderthalensis

Proto-Neanderthals
emerge around 600k
years ago

“True” Neanderthals
emerge around 200k
years ago

Died out
approximately
40,000 years ago

Known for their
robust physique

Made advanced
tools, probably had a
language (the nature
of which is debated
and likely
unknowable) and
lived in complex
social groups

Homo
sapiens sapiens

Apparently
emerged from
earlier hominids in
Africa around 50k
years ago

Capable of
amazing
intellectual and
social behaviors

Mostly Harmless ©
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A Draft Se%uence of the Neandertal Genome
Richard E. Green, et al.

Science 328, 710 (2010);

DOI: 10.1126/science.1188021

Fig. 1. Samples and sites from which DNA was retrieved. (A) The three bones from Vindija from which
Neandertal DNA was sequenced. (B) Map showing the four archaeological sites from which bones were
used and their approximate dates (years B.P.).



Extracting Ancient DNA




DNA is from mixed sources

hominigl y Burkholgleriales
(3.5%) (0.8/0)Other
2.8%)

unclassified

environmental
(4.1%)

Actinomycetales
(5.0%)

No hit
(83.8%)
Vindija 0.2 -3.5%
El Sidron 0.1-0.4%

Neander Valley 0.2 -0.5%
Mezmaiskaya 0.8 -1.5%




frequency

DNA is degraded
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DNA is chemically damaged
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Vindija 33.16 ~1.2 Gb
3325 ~1.3Gb
33.26 ~1.5Gb

El Sidron (1253) ~2.2 Mb
Feldhofer 1 ~2.2 Mb
Mezmaiskaya 1 ~56.4 Mb

Green et al, 2010 ~35 lllumina flow cells

Genome coverage ~1.3 X




Did we mix!?
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Did we mix!?

As far as we know,
Neanderthals were never
in Africa, and do not see
Neanderthal alleles to be
more common in one
African population over
another

African 1
o1

99,798

o
O
O
Neandertal
? African 2
G-

99,515




Did we mix!?

In contrast, we do see °
Neanderthals match -
Europeans significantly
more frequently than

) O
Africans

Neandertal

?
European : African 1

T G4

\ /
Nt

92,066 84,025




Did we mix!?

Also see Neanderthals
match Chinese

significantly more
often...

... but Neanderthals
never lived in Chinal

3
O
Neandertal
? :
Chinese 5 African 1
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Neanderthal Interbreeding

As modern humans migrated out of Africa, they apparently interbred with
Neanderthal's so we see their alleles across the rest of the world and carry
about 2.5% of their genome with us!




What about other ancient hominids?
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Extraordinary preservation
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Number of comparisons

45

40

35

Human-Human

e Al 2000 dek 0034/ nature8976

The complete mitochondrial DNA genome of an
unknown hominin from southern Siberia

Neandertal-Human

Denisova-Human

25 50 75 100

150 175 200 225 250 275 300 325 350 375 400

Pairwise nucleotide distance




~804,000 yrs =p

4= ~640,000 yrs
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Humans Neandertals Denisovans
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Except in New Guineal

Map after Pickrell ¢t al, 2009






















We have always mixed!




Modern human-specific changes
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7-9 myr ==l
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Recipe for a modern human

109,295 single nucleotide changes (SNCs)
7,944 Insertions and deletions

Changes in protein coding genes

277 cause fixed amino acid substitutions
87 affect splice sites

Changes in Non-coding & regulatory sequences

26 affect well-defined motifs inside
regulatory regions



Enrichment analysis
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skeletal morpho

- 1-5 10¢ syndactyly (p~ 1 34288085, FWER 0 535, FDR «0.(0887925)
« AplasiaHypoplasaa of the distal phalanx of the thumb (p~1 34288¢.05;
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Central polvdactyly (fect) (p~ | 34288505, FWER~0 535,
FDR~0.0S887928)

logies (limb length, digit development)

LASTAl UNCTNAE GUPICIEION (P | 39IABCUD; F W LK™ UDMS,
FDR~00S87928)
- Dysplastic dasnal thumb phalanges with a central hole (p1.3428Ke-05,

morphologies of the larynx and the epiglottis FWER-0.538;

PRI U URSS FY L)
- Laryngeal clefi (po] 34258605, FWER~0.53%; FDR -0 08X792%)

Madline facial capellary hemangioma (p~ | 3288005, FWER-0 535,
FDR~008879258)
- Predoctal coarctation of the aora (p= | 34288085, FWER 0O 538
FDR~0.0887925)
» Radial head sebdaxation (p~ | M2550.05; FWER~0.538; FDR -0 OS879258)
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Neandertal-specific changes
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Enrichment analysis

Nonsynonymous

None

- Abnormality of the thumb (p=3.01¢-5; FWER=0.025; FDR=0.02)

- Aplasia'Hypoplasia of the thumb (p~6.31-5; FWER~0.054; FDR~0.024)

- Facial cleft (p=0.0004; FWER=0.36: FDR=0.098)

- Wide pubic symphysis (p=0.0004; FWER=0.36; FDR=0.098)

- z\bnonnaluy ofllu frontal h.nrllm (p* 00004’ H\ FR 0.39; PDR 0.096)

P PN ———— e

Skeletal and hair morphology 84)
‘ .A‘h;;ormalm of th: tx‘l;;:.rl:p ‘O‘(;i)()ﬁ .H\:l:l.{‘ 0’4-; l:l;l.l‘ (;(‘]'R) ’
- Brachydactyly syndrome (p~0.00062; FWER~0.48; FDR~0.088)
" Ensembl Protein Ancestral Derived Risd
Protein S g y ; g Description
1D position amino acid  amino acid

ABCAI12 ENSPOO000272895 199 W C ATP-binding cassette, sub-family A (ABC1)
FRASI ENSPOO000264895 200 P S Fraser syndrome 1
GLI3 ENSPOO0O03 79258 1537 R G GLI family zinc finger 3
LAMB3 ENSP00000355997 926 A D Laminin. beta 3
MOGS  ENSPOO000233616 495 R Q Mannosyl-oligosaccharide glucosidase




FOXP2 Analysis
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* Mutations of FOXP2 cause a severe
speech and language disorder in people

* Versions of FOXP2 exist in similar

; forms in distantly related vertebrates;
functional studies of the gene in mice
and in songbirds indicate that it is
important for modulating plasticity of
neural circuits.

* Outside the brain FOXP2 has also
been implicated in development of
PG e o5 B A s B S . T s e B e e Smreete| other tissues such as the lung and gut.
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Molecular evolution of FOXP2, a gene involved in speech and language
Enard et al (2002) Nature. doi:10.1038/nature01025



What makes us human?

“Human Accelerated Regions”

QACGAAATGGTTTCTATCAAAATIGAAAGTIJT TTAGAGATTTTCCTCAAG
TCAGCAQIIGGAAATAGTTTCTATCAAAATITIAAAGT TTTAGAGATTTTCCTCA‘E
TCAGCGHIGCAAACAGTTTCTATCAAAATITIAAAGT TTTAGAGATTTTCCTCA‘i
TCAGCCQIIGGAAATGGTTTCTATCAAAATITIAAAGT TTTAGAGATTTTCCTCA'i
TCAGCAQIIGGAAATGGT TTCTATCAAAATITIAAAGT] TTTAGAGATTTTCCTCA'i
TCAGCAQTAGAAACAGTTTCTATCAAAATITIAAAGTIAT TTAGAGATTTTCCTCAAN

A
i
"A

chicken

Systematic scan of recent
human evolution identified
the gene HAR1F as the
most dramatic “human
accelerated region”.

Follow up analysis found it
was specifically expressed in
Cajal-Retzius neurons in the
human brain from 6 to 19
gestational weeks.

(Pollard et al., Nature, 2006)



Agenda

3. Genetic Privacy
|. lobSTR and Microsatellites

2. Surname inference
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DOI: 10.1126/science.1229566

Melissa (ggmrek et al.
Science 339, 321 (2013);
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What are microsatellites

* Tandemly repeated sequence motifs
— Motifs are | — 6 nt long

— So far, min. 8 nt length, min. 3 tandem repeats for our analyses

* Ubiquitous in human genome

— >5.7 million uninterrupted microsatellites in hgl9

* Extremely unstable

— Mutation rate thought to be ~10-3 per generation in humans

* Unique mutation mechanism

— Replication slippage during mitosis and meiosis

* May be under neutral selection

cCTCTCTCTCTCTCTCTCTCTCTCTCa =» (CT),;5 tCAACAACAACAACAACAACAAa =» (CAA),

tTTGTCTTGTCTTGTCTTGTCTTGTCTTGTCc =» (TTGTC), cCATTCATTCATTCATTa =» (CATT),

Microsatellites: Simple Sequences with Complex Evolution
Ellegren (2004) Nature Reviews Genetics. doi:10.1038/nrg| 348



Replication slippage

* Out-of-phase re-annealing

— Nascent and template strands Expansion:
dissociate and re-anneal out-of-phase 3

* Loops repaired by mismatch —_—5

repair machinery (MMR)
— Very efficient for small loops
— Possible strand-specific repair

Contraction:
* Stepwise process e
— Nascent strand gains or loses full e ———
repeat units O
3

— Typically single unit mutations

* Varies by motif length, motif
composition, etc.

Microsatellites: Simple Sequences with Complex Evolution
Ellegren (2004) Nature Reviews Genetics. doi:10.1038/nrg| 348



Why should we care about
microsatellites?

* Polymorphism and
mutation rate variation

e Disease

— Huntington’s Disease

— Fragile X syndrome

— Friedrich’s ataxia

* Mutations as lineage

- Organogenesis/embryonic
development

— Tumor development

Phylogenetic fate mapping
Salipante (2006) PNAS. doi: 10.1073/pnas.0601265103 26



Genealogy Databases

ysearch
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Genealogy Databases Enable Naming
Of Anonymous DNA Donors



Surname Inference Overview

Y-STR search engines

ysearch
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lobSTR Algorithm Overview

Sensing '} Alignment ') Allelotyping

1. Sensing | o Alignment

Detact inormalive ST readls Anchor flanking regions to reference

ACGGCTAGCGTGTGTGTGTGTGCACAGAGT ACGGCTAGC GTGTGTGTGTGT GCACAGAGT

Determine repeat unit Return # repeat units

M ¥

GT | GTx 6
' 3. Allelotyping
Determine maximum likelihood GTx 6
allelotype at each STR locus '> GTx 8

lIobSTR: A short tandem repeat profiler for personal genomes
Gymrek et al. (2012) Genome Research. doi:10.1101/gr.135780.11 |



lobSTR Accuracy

B

>

All sites Discordant parental sites
1 1
< °
§ ads 1/"/.‘*-‘—““‘ "
5 |
© 09 4 09
é oow -y 1)
=
§ o8 4 0s
& 1 RMEFEIEARESIIEASASNNERERRRARES 7\, § TS RN U S AT N TSR U T L S s -
1234567 85NNV USHITENRNIIRIDIMNI 1 2346587 FE 9NN NRDUISHBTHBPIRIINDG
000000 1000000
& WMM\ -
= 10000 4 10000
: "“‘“‘M\\
B 1000 < 1000
? 100 < "o
8 w "
*
$ 0 -0 @ P 00— P <P PP PGB B B W@ GG P =P B P O b 1 - v v v v +—r—
12345678 9MNMRRBIUNISBITERINRNMNE T 2345607 890NV MNBBNBITHRNRONNDMNG
Coverage threshold Coverage threshold

Figure 4. Validating lobSTR by Mendelian inheritance in a HapMap trio. Mendelian inheritance (blue and
cyan) rose to 99% above 17X coverage. (Dark and light red) The number of covered loci at each
threshold. (A) Mendelian inheritance of all covered loci. (B) Mendelian inheritance of loci with discordant

parental allelotypes.
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lobSTR Performance

STR reads
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LobSTR processes reads between
2.5 and 1000 times faster than
mainstream aligners.

Only BLAT detected more STR
variations than IobSTR.

LobSTR accurately detects
pathogenic trinucleotide
expansions that are normally
discarded by mainstream aligners.

e BWA only reports normal
allele.

e LobSTR identifies both alleles
present at the simulated loci.



Surname Inference

Whose sequence
reads are these?

—_—

Identifying Personal Genomes by Surname Inference
Gymrek et al (2013) Science. doi: 10.1126/science.1229566



Step |.Profile Y-STRs from the individual’s
genome.

The human reference genome contains 16 copies of “TTTC". Venter has an extra
copy of “TTTC", giving him a genotype of “17” at this marker. In a similar way, we
can profile all other genealogical STR markers on the Y-chromosome where we
know Venter's genome sequence to get the value of a whole panel of these
markers.



Step 2. Search for a surname hit in online
genetic genealogy databases.

http://www.ysearch.org



Step 3. Search with additional metadata to
narrow down the individual.

We enter the search information: Venter, CA, and 66:

Tell Us Who You're Looking Forl
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http://www.ussearch.com



Surname Inference

It's Craig Venter!

—_—

Identifying Personal Genomes by Surname Inference
Gymrek et al (2013) Science. doi: 10.1126/science.1229566



e 187 fasta reads acquired from

Can we identify Jim VWatson!

e /41,131,864 reads mapped.
e 24 markers identified.
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e YySearch returns inconclusive

search result;

User : Last s 5 Markers Genetic
Compare D Pedigree Naraa ‘ Origin Haplogroup|| Tested With Compared Dist
A424] Howard ‘Bgzn South Carolina, R1b* Ancestry.com ||8 0

e Possible errors?

O

Insufficient family data for
Watson’s relatives online

Unreliable sequence reads

Potential LobSTR mistake, mis-
alignment error or not enough
input data



|dentifiers and Quasi-identifiers

Quasi-identifier

*

Sex
Ethnic group**

Eye colour®

Blood group (ABO and Rhesus systems)'
State of residence*

Height*

Year of birth*

Day and mofith of birth*

Surname*

Zip code**

Expected information
content (bits)

1.0
1.4
14
2.2
5.0
5.0
6.3
8.5
12.9
13.8

e \What are Quasi-ldentifiers?

Pieces of information that
are not unique by
themselves, but when
combined with other quasi-
identifiers, may create a
unique identifier.

e What is Entropy?

Routes for breaching and protecting genetic privacy

Erlich and Narayanan (2014) Nature Reviews Genetics. doi: 10.1038/nrg3723

Entropy measures the
degree of uncertainty in the
outcome of a random
variable, where 1 bit equates
to the chances of tossing a
single fair coin.

Complete identification is
guaranteed when expected
information bits reaches 0.



Inspect sex
Sreary y
CAromosomes

Possible route for identity tracing

A

. m m\ —
Unknown @) 9, 9,

genome

L','v-',.x‘h ¢ to

Large

>ex Statelof Age

its) 28 27

US population: ~313.9 million
individuals

log, 313,900,000 = 28.226 bits
Sex ~ 1.0 information bits
log, 156,950,000 = 27.226 bits

Y
\J
e
3

' Triangulation
of identity

e Tracing attacks

combine metadata and
surname inference to
triangulate the identity
of an unknown
individual.

With no information,
there are roughly 300
million matching
individuals in the US,
equating to 28.0 bits of
entropy.

Sex reduces entropy
by 1 bit, state of
residence and age
reduces to 16,
successful surname
inference reduces to
~3 bits.



The risks of big data!?

SR COMMENT ARY

Predicting Social Security numbers from public data

Alessandro Acquistl® and Ralph Gross
Camegle Melion Univervity, Pitssbergh, PA 15213
Communicated by Stephen E Faeaberg, Carnegie Mellon University, Pttsburgh, PA May S, 2009 {received for review Jarsery 14, 2008)

Information about an Individual's place and date of birth can be  number (SN). The SSA openly provides information about the
exploited t0 predict his or her Social Security number (SSN). Using  peocess through whiach ANs, GNs, and SNs are issued (1), ANs
oaly publicly available information, we observed a correlation  are currently assigned based oo the zipcode of the mailing
between individuals’ SSNs and their birth data and found that for  sddress provided in the SSN application form [RMO0201.030]
younger cohorts the correlation aliows statistical inference of (1). Low-population states and cortain U.S. possessions arc

private $5Ns, The inferences are made possible by the public  4lincaned | AN cach, whereas other states are allocated sets of
avadabllity of the Soclal Security Administration’s Death Master AN (for instance an individual anelvine from a zincode within

File and the widespread accessibility of
mudtiple sources, such as data brokers or  w T »
brasiva g camd arodrt publish on social networking sites (10). Using this method, we
ok assecioted with imtormason oo s identificd with a single attempt the first S digits for 445 of DMF
records of deccased individuals born in the US. from 1989 10
2003 and the complete SSNs with <1000 attempts (making
SSNs akin 1o 3-digit financial PINs) for 8.5% of those records.
Extrapolating to the U.S. living population, this would imply the
potential identification of millions of SSNs for individuals whose
birth data were available, Such findings highlight the hidden
privacy costs of widespread information dissemination and the
complex interactions multiple data sources in modern
information ecooomiecn(olﬁ underscoring the role of public
records as breeder documents (12) of more sensitive data.

their unhindered Groslation. Such is the case
numbers in the United States: Created as §
trackisg individusl carnings (1), they have 1
authentication devices (2), becoming one of
on most ofien t by essity thieves.




Broader Privacy Implications

Nature Reviews | Genetics



Next class

* Gene Finding and HMMs

* Review!

* Homework due Monday



